================== /// MCP /// /// AWS /// ================== [server:online] [protocol:ready]
awslabs/mcp
by awslabs
Suite of AWS-focused Model Context Protocol (MCP) servers – lightweight Python services that expose AWS tooling, documentation, pricing, IaC and other capabilities to MCP-compatible AI clients (Amazon Q, Cline, Cursor, Windsurf, etc.).
4.7k
585
Open SourceInstallation
1. Prerequisites
• Python ≥3.9
• AWS account with credentials configured in ~/.aws/credentials or via environment variables (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_DEFAULT_REGION)
• (Optional) Docker if you prefer container deployment
2. Clone the repository
git clone https://github.com/awslabs/mcp.git
cd mcp
3. Create virtual environment & install dependencies
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install --upgrade pip
pip install -r requirements.txt
(If a `requirements-dev.txt` file exists, install it the same way for local testing.)
4. Build & run the MCP server locally
# Update the config file (see ./config/example-config.yaml) with your AWS settings
cp config/example-config.yaml config/config.yaml
vi config/config.yaml # or your preferred editor
# Start the server
python -m mcp.server --config ./config/config.yaml
5. Using Docker (alternative)
docker build -t aws-mcp:latest .
docker run -p 8080:8080 -e AWS_ACCESS_KEY_ID -e AWS_SECRET_ACCESS_KEY aws-mcp:latest
6. Verify
Open http://localhost:8080/health or run:
curl http://localhost:8080/health
7. Install CLI / client library (optional)
pip install aws-mcp-client # if published to PyPI
8. Deployment to AWS (optional sketch)
• Review the CDK/Terraform templates in `deploy/`
• Configure parameters (VPC, sub-nets, domain, certificate)
• Deploy: `cd deploy/cdk && cdk deploy` or follow README in the deploy folder.
Documentation
License: Apache License 2.0
Updated 7/15/2025