================== /// MCP /// /// AWS /// ================== [server:online] [protocol:ready]
aws-mcp-server
by alexei-led
Light-weight Model Context Protocol (MCP) server that lets AI assistants safely request AWS-CLI documentation and execute AWS commands (with Unix-pipe support) inside an isolated Docker container.
143
21
Open Source01
aws_cli_help
Retrieve detailed AWS CLI documentation for AWS services and commands.
02
aws_cli_pipeline
Execute AWS CLI commands (with optional Unix pipes) and return formatted results optimized for AI consumption.
Installation
1. Prerequisites:
• Docker installed and running
• An AWS IAM user or role with the minimal permissions you want the server to have
• Environment variables AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and (optionally) AWS_SESSION_TOKEN, AWS_REGION set
2. Clone the repository
git clone https://github.com/alexei-led/aws-mcp-server.git
cd aws-mcp-server
3. Build the container image (replace tag as desired)
docker build -t aws-mcp-server:latest .
4. Launch the server (exposes MCP on port 3333 by default)
-e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
-e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
-e AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN \
-e AWS_REGION=${AWS_REGION:-us-east-1} \
-p 3333:3333 \
docker run -d --name aws-mcp-server \
aws-mcp-server:latest
# OR with an AWS credentials file mounted
# docker run -d -p 3333:3333 -v $HOME/.aws:/root/.aws aws-mcp-server:latest
5. Verify it is reachable
curl http://localhost:3333/healthz
6. Point your MCP-aware client (Claude, Cursor, etc.) at http://<host>:3333 to start issuing AWS CLI commands.
Documentation
License: MIT License
Updated 7/15/2025