================== /// MCP /// /// MEM /// ================== [server:online] [protocol:ready]
mem0-mcp
by mem0ai
MCP Server that integrates with mem0.ai to store, retrieve and semantically-search coding preferences via an SSE endpoint.
406
85
Specialized01
add_coding_preference
Store code snippets, implementation details, and coding patterns with full contextual information (dependencies, versions, setup, docs, examples, best practices).
02
get_all_coding_preferences
Retrieve the complete collection of stored coding preferences for review and analysis.
03
search_coding_preferences
Semantically search stored coding preferences to locate relevant implementations, solutions, best practices, and documentation.
Installation
1. Clone the repository
git clone https://github.com/mem0ai/mem0-mcp.git
cd mem0-mcp
2. Create and activate a virtual environment (recommended)
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
3. Install Python dependencies
pip install -r requirements.txt # If a requirements file exists
# or, if the project uses Poetry
# poetry install
4. Configure environment variables (typical MCP servers)
export OPENAI_API_KEY="<your-openai-key>"
export MCP_PORT=8080 # change as needed
# Add any other provider keys mentioned in the project docs
5. Start the server in development mode
python -m mem0_mcp.server # or the main entry-point specified in README
# Alternatively, if the project supplies a CLI script:
# mem0-mcp run --port 8080
6. Verify it is running by visiting
http://localhost:8080/health or the default status endpoint.
7. (Optional) Run tests
pytest # if a tests directory exists
8. Deploy
docker build -t mem0-mcp . # if a Dockerfile exists
docker run -p 8080:8080 -e OPENAI_API_KEY=... mem0-mcp
Documentation
License: No license file detected (proprietary / unspecified)
Updated 7/30/2025