==================
      
       /// MCP ///
      /// MCP ///
        
    ==================
        
    [server:online]
    [protocol:ready]mcp-server-bigquery
by LucasHild
A Model Context Protocol (MCP) server that lets LLMs inspect BigQuery schemas and run SQL queries.
113
29
Specialized01
execute-query
Executes a SQL query using BigQuery dialect
02
list-tables
Lists all tables in the BigQuery database
03
describe-table
Describes the schema of a specific table
Installation
1. Clone the repository
git clone https://github.com/LucasHild/mcp-server-bigquery.git
cd mcp-server-bigquery2. Create a virtual environment (optional but recommended)
python -m venv .venv
source .venv/bin/activate   # Windows: .venv\Scripts\activate3. Install Python dependencies
pip install -r requirements.txt4. Provide Google BigQuery credentials
   • Create a GCP service-account with BigQuery read/write permissions.
   • Download its JSON key and export its path:
export GOOGLE_APPLICATION_CREDENTIALS=/absolute/path/key.json5. Configure the MCP server
   • Copy the sample configuration and edit it:
   • Set values for project_id, default_dataset, allowed_tables, host, and port.
cp config.sample.yaml config.yaml6. Run database migrations (if any)
python scripts/init_db.py   # only if the repo supplies a migration script7. Start the server
python -m mcp_server_bigquery --config config.yaml
# or
uvicorn mcp_server_bigquery.app:app --host 0.0.0.0 --port 80808. Verify
curl http://localhost:8080/healthzDocumentation
License: MIT License
Updated 7/30/2025