==================
      
       /// MCP ///
      /// MCP ///
        
    ==================
        
    [server:online]
    [protocol:ready]mcp-server-apache-airflow
by yangkyeongmo
Model Context Protocol (MCP) server that wraps the Apache Airflow REST API so MCP-compatible clients can manage DAGs, runs, tasks, variables, connections, pools, etc. through a unified interface.
72
20
Open SourceInstallation
1. Prerequisites:
   • Python 3.8+
   • An existing Apache Airflow installation (>=2.5)
2. Install the MCP Airflow server package from PyPI:
   pip install mcp-server-apache-airflow3. Enable the provider inside Airflow:
   In your `airflow.cfg` or via environment variable, add the plug-in to the plugins folder if required, e.g.
   export AIRFLOW__CORE__PLUGINS_FOLDER=$AIRFLOW_HOME/plugins   The package automatically exposes its plugins after installation; restart the Airflow web-server and scheduler.
4. Configuration:
   • Set the MCP endpoint and token in an Airflow connection or via environment variables, e.g.
     export MCP_API_URL="https://<your-mcp-host>/api"
     export MCP_API_TOKEN="<personal-access-token>"   • Optionally configure connection id `mcp_default` in the Airflow UI (type: HTTP) that stores the same URL and token.
5. Verify:
   • In the Airflow UI, navigate to Admin ➜ Connections and ensure `mcp_default` exists.
   • Run the example DAG that ships with the package (`example_mcp_dag`) to validate connectivity.
Documentation
License: MIT License
Updated 7/30/2025