'3 augment code

Al-Powered
Engineering
at Scale

Breaking
out of the
hype cycle

{3 augment code

The Al-augmented
engineering opportunity

As the initial hype around Al in coding settles, career developers on the most innovative
engineering teams are beginning to see measurable impact — not just in code generation,
but in deployment velocity, onboarding speed, and technical debt reduction across the entire
software development lifecycle (SDLC).

Enough early adopters of Al-assisted development have moved into the very real stages of
experimentation, adoption, and innovation, that we now have a good look at what behaviors
are driving positive outcomes. We'll share our findings with you in this playbook, but here are
a few of the biggest takeaways.

Champions are the secret weapon when it comes
to enterprise adoption.

Experimentation is the name of the game when it comes to early stages of Al-powered
development adoption. In the most forward-thinking engineering organizations, champions
are leading the march, presenting at all hands, holding demos and lunch and learns, and
helping steer widespread adoption through excitement and a culture of curiosity. They're
proving that true Al-augmented performance is about more than code completions and
lines generated, it's about reducing points of friction wherever they exist and improving the
metrics you're already measuring.

Al-augmented engineering is about far more than
writing code.

Scaling Al-augmented engineering requires a fundamental shift from thinking about
individual productivity gains to team-wide capability amplification. Instead of just helping
developers write code faster, it's about creating Al that truly understands your organization’s
software — your APls, architecture, coding standards, and business logic. This enables
engineers to tackle previously daunting tasks like rapidly onboarding to unfamiliar
codebases, coordinating changes across multiple services, modernizing legacy systems, and
maintaining quality at scale.

Introduction

Scalable Al
definition

Creating the systems,
processes, and culture
to make Al-powered
development a
repeatable, reliable driver
of business value.

{3 augment code

Getting the best outcomes requires using the
best context.

Enterprise engineering teams face a unique set of challenges that generic Al tools simply
can't address. They're working with massive, complex codebases spanning millions of lines
across hundreds of services, dealing with legacy systems, intricate dependencies, and years
of accumulated technical debt. The companies seeing the biggest gains use developer Al
that scales to enterprise complexity through the use of real-time context engineering. Al
that understands the context of the project it's working on transforms how teams approach
everything from debugging production issues to executing large-scale migrations. The
result is engineers who can operate more like senior technical leads, orchestrating complex
changes while using context-aware Al able to handle the intricate details.

Scalable Al benefits require structured adoption
frameworks.

Although many teams are now using Al tools, the research and adoption process at many
companies remains ad hoc at best. At the most successful organizations, the process has
been embraced from above with:

e Guidance on workflows and best practices that go beyond personal usage

o Top-down direction that engages everyone (even the skeptics) and helps prove out
the benefits

¢ Phased adoption plans that meet both the teams and the technology where they are
today while embracing the curiosity required to move forward

In the following pages, we'll lay out our four-phase framework — from individual
experimentation to industry leadership — to help you identify where your organization stands
and chart your path to measurable Al transformation.

Introduction 3

Contents

SELF-ASSESSMENT

N
(8]

Where does your organization stand?

PHASE 1 @ The champion foundation

PHASE 2 ‘ Scaling and proving

PHASE 3 @ Integration and systemization

PHASE 4 @ Continuous innovation
@

{3 augment code

THE CHAMPION FOUNDATION

"At some point
| realized: this
is going to
transform our
engineering
process.”

— Tony Bentley,
Staff Engineer
Drata

PHASE 1

The Champion
Foundation

What you'll accomplish

« Transform scattered experimentation into systematic adoption

« |dentify and empower Al champions to drive measurable results

« Begin tracking adoption rates, developer sentiment, and champion-driven wins
« Aim to consolidate the champion foundation phase into 2-3 months

Laying the foundation

In the earliest phase of Al-powered development adoption, companies understand that there
is potential in Al-augmented engineering but often stall out when it comes to translating
individual success to wider adoption and measurable returns.

At this bottom-up phase of adoption, the key is to focus on facilitated exploration tied to a
mix of quantitative and qualitative goals, like growing tool use, achieving and documenting
small wins, and measuring developer sentiment. You're setting the foundation for
transformation, and that begins with achieving buy in — including from the skeptics. So it's
important to recruit champions and set the stage for formalizing what success looks like by
documenting and sharing wins regularly and widely. Let's explore an example from the field.

DRATA CASE STUDY

From the field:

How Drata built their Champion
Foundation

When Drata, a fast-growing Al-native Trust
Management platform with 200+ engineers across
three regions, faced the challenge of moving from
scattered Al experimentation to systematic adoption,
CTO Daniel Marashlian knew they needed more
than individual engineers trying random tools. They
needed champions who could drive measurable
results across the organization.

For Drata, measurement looked like:

« Hard-wired OKRs: Al adoption became an explicit
engineering objective. Success = Every engineer
touches the assistant at least once per week during
the first quarter.

o Champion channel: A public Slack channel called
#wins-ai showcases screenshots of successful
prompts and performance gains. Success = Roughly
half the posts now come from engineers using the
coding assistant.

» Education push: Engineers self-selected Coursera,
internal workshops, or vendor-led sessions, then
logged completed learning in a central tracker.
Success = The org embraced the stance of: "Al
literacy is non-negotiable.”

~ () % DRATA

TASK SPEED-UPS EACH WEEK

THE CHAMPION FOUNDATION

THE CHAMPION FOUNDATION

DRATA CASE STUDY

From the field:

How Drata built their Champion
Foundation

Drata's approach perfectly exemplifies the Champion Foundation Phase. The team took a
systematic approach to experimentation that identified clear champions and established an
adoption framework that would scale across their entire engineering organization. And the
push paid off with early wins that moved the needle on existing coding challenges.

e Unit-test turbo-boost: Complicated mocking suites that once took hours now
materialize in minutes, lifting coverage of neglected paths.

« Boilerplate acceleration: Agents scaffold services fast enough to “reduce the
majority of setup time by a huge factor.”

o Slack brag file: Dozens of #wins-ai posts document 5-10x task speed-ups each
week — priceless for momentum.

Test suites that once took hours
now materialize in minutes

Phase 1

Adoption
framework

Drata didn't just test tools,
they built a champion
network that could
systematically evaluate,
adopt, and scale Al

across their engineering
organization. Adapt

the checklist to your
organization to kick off a
more methodical adoption
framework for your own

Al exploration. Aim to
complete the first two
sections in the first week or
two of your pilot program
with the following sections
in the following weeks,
consolidating this initial
exploration phase in two to
three months.

{3 augment code

CHAMPION IDENTIFICATION AND SETUP

D Recruit your champions: consider individuals who are influential, technically strong,
and represent different team perspectives, including one or two constructively
skeptical voices

D Establish “all-in” commitment from participants — no casual testing

D Define specific use cases like boilerplate generation, complex unit tests, cross-
service refactors

D Set up evaluation framework with appropriate security/compliance requirements for
your organization

SYSTEMATIC EXPLORATION WITH CHAMPIONS

D Mandate daily usage across all eligible coding tasks
D Conduct regular champion check-ins to document wins and challenges
D Pressure-test tools with real codebase scenarios (not toy examples)

D Track both quantitative metrics (think: time to complete specific tasks, code quality
metrics, developer satisfaction scores) and qualitative champion feedback

CHAMPION-DRIVEN EVALUATION AND DOCUMENTATION

D Have champions test tools and prompts against complex, real-world scenarios
[C] Document specific wins with before/after comparisons
D Evaluate tools based on evidence, not vendor promises

D Build business case with ROI projections from champion results

FOUNDATION FOR SCALE

D Establish Al usage as team OKR (systematic tracking)
D Create dedicated channel for ongoing champion sharing (#wins-ai)

D Design training program: vendor-led, internal, and external courses

The champion foundation to-do list

Your foundation-building starts now

The difference between organizations that successfully adopt Al and those that stall in

endless experimentation comes down to systematic champion development. Start with the

checklist above, but remember: the goal isn't perfect execution — it's building momentum
The foundation through documented wins and systematic adoption that proves Al's value to your entire

YOUIVG built organization.

becomesthe once you've established your champion foundation with documented wins, systematic
Iaunchpad for tracking, and organization-wide buy-in, you're ready to move beyond experimentation.
You'll know you're there when you start seeing results like:
transformation

at scale e Champions naturally sharing wins without prompting
e Skeptics asking how to get access to the tools

e Usage metrics showing consistent daily engagement across pilot teams

This foundation becomes your proof of concept for organization-wide transformation.
Phase 2 focuses on scaling these champion-driven successes into measurable business
impact across your entire engineering organization. The foundation you've built becomes
the launchpad for transformation at scale.

@ PRO TIP

How to choose Al tools that champions will actually adopt

The biggest mistake organizations make in Phase
1is overwhelming champions with too many tool
options or choosing tools based on vendor demos
rather than real-world performance. Champions

navigate your monorepo and suggest
changes that fit your existing patterns?

Trusted security and compliance: Will it

protect your intellectual property while

need Al that works reliably with their actual)
learning from your code?

codebases, not toy examples or greenfield projects.
e Room to grow: Can it scale from individual

The key is starting with tools that understand productivity to team-wide workflows?

context: your existing code patterns, architectural
decisions, and team conventions. Generic Al
assistants that suggest code snippets without
understanding your codebase structure will
frustrate champions and undermine the entire
evaluation process.

Champions should be able to test these

tools against your most complex, real-world
scenarios, not just simplified examples. When

Al truly understands your development context,
champions become genuine advocates because
the tool actually makes their hardest work easier,
creating the authentic enthusiasm needed to drive
organization-wide adoption.

Focus on tools that demonstrate three core
capabilities during champion evaluation:
o Deep codebase understanding: Can it

=
o
—
—
<<
o
=
2
o
L
=
o
—
o
=
<<
T
(&}
w
pu
f

SCALING AND PROVING

Systematize what
your champions
discovered and
make it work at
organizational
scale.

PHASE 2

Scaling and Proving

What you'll accomplish

e Scale champion practices across teams and complex codebases using real use
cases, like refactoring code, fixing small bugs, and writing documentation

o Establish a mix of baseline metrics that include Al's impact on existing metrics and
new ones that help formalize evaluations

o Demonstrate that Al can handle real enterprise complexity beyond simple
completions to areas like sophisticated IDE integration and team-wide adoption

e Bring Al-powered development out of individual work and into the spotlight as
champions regularly share their wins and discoveries company wide

o Timelines will vary at this phase, but think in terms of 1-2 quarters, giving you the
ability to measure against goals and improvements

Controlled exploration and expansion

In Phase 1, you proved that Al works with your champions. People around the company are
starting to get excited about the exploration and early wins, and now you face the challenge
of scaling from a few enthusiastic adopters to a team of engineers with varying skills, use
cases, and resistance levels. Phase 2 is all about systematizing what your champions
discovered and making it work at organizational scale.

In this phase, exploration is still encouraged, but with pre-identified tools and goals that help
provide the scaffolding for understanding what works and why. It becomes increasingly
more important now to tie success to productivity gains on specific tasks, the emergence
of documented best practices, and an increase in interest across teams. Let's explore an
example from the field.

10

WEBFLOW CASE STUDY

From the Field:

How Webflow scaled Al across
complex engineering teams

SCALING AND PROVING

When Webflow, a leading visual development
platform with specialized frontend and backend
engineering teams, moved beyond Al pilot programs,
they faced the classic Phase 2 challenge: How do
you scale Al adoption across complex codebases and
diverse team needs without losing the productivity
gains that made Al promising in the first place?

CTO Allan Leinwand knew they needed more than
scattered tool adoption — they needed systematic
integration that worked for their entire JavaScript
ecosystem. Webflow’s scaling approach focused on
three key areas:

1. Production-grade tooling: Webflow integrated
context-aware Al that understood their complex
tech stack and maintained consistency across
frontend and backend teams. Success = Al
suggestions that match existing architectural
patterns and coding standards.

2. Systematic onboarding: New hires began
onboarding with Al tools to quickly understand
complex codebases, turning Al from individual
productivity hacks into systematic team
advantages. Success = Reduced time-to-
productivity for new engineers.

3. Cross-team measurement: Webflow tracked
concrete productivity metrics across specialized
teams rather than relying on anecdotal wins.
Success = Measurable increases in PRs, code
submissions, bug fixes, and test coverage per
engineer.

N Webflow

n

(L]
=
—
>
o
o
(=%
[m]
=
<C
(L]
=
—
—
<
(&}
2]

WEBFLOW CASE STUDY

The results demonstrated true Phase 2 success, moving from champion enthusiasm to
organization-wide capability:

e Measurable productivity gains: More PRs per engineer, more
“It's gotten rid of a lot of the code submissions, more bug fixes, and more tests written across both
drudgery... It feels like having frontend. and backeno! teams. It's wgrth noting he.re that Webf{ow didn't
need to introduce entirely new metrics to determine success, instead,
M 1
a palr-programmer that YOUTE they looked at the impact Al made on existing metrics and goals.

. n
working with e Maintained flow state: Context-aware Al became invisible
infrastructure that enhanced rather than interrupted developer

— Merrick Christensen, \yorkflow, enabling deep work on complex problems.

Principal Engineer
Webflow » Systematic knowledge transfer: New engineers onboard faster
with Al assistance, turning complex codebase navigation from weeks-
long challenge into systematic capability.

Webflow's experience illustrates the Phase 2 transition: moving from “our champions love this
tool” to “our entire engineering organization depends on this capability.”

SUCCESS =

01 02 03

AI SUGGESTIONS THAT REDUCED TIME-TO- MEASURABLE

MATCH EXISTING PRODUCTIVITY FOR INCREASES IN PRS,

ARCHITECTURAL NEW ENGINEERS. CODE SUBMISSIONS,

PATTERNS AND CODING BUG FIXES, AND

STANDARDS. TEST COVERAGE PER
ENGINEER.

12

Phase 2

Adoption
framework

Webflow didn't just

expand Al usage. The

team systematically

scaled production-grade
capabilities that worked
across specialized teams
and complex codebases.
Use the checklist below

to move your organization
from champion-driven
exploration to enterprise-
scale adoption. Plan for

this phase to take 3 to 6
months, with the first month
focused on infrastructure
and measurement, followed
by systematic rollout across
teams.

{3 augment code

PRODUCTION-GRADE INFRASTRUCTURE SETUP

D Implement usage analytics and ROI tracking systems across all engineering teams

D Create standardized onboarding workflows that don't depend on champion
availability

D Set up support processes and documentation for non-champion engineers

SYSTEMATIC TRAINING AND ENABLEMENT

D Create self-service learning resources and best practice documentation
D Establish Al literacy as part of engineering competency frameworks

D Design new hire onboarding that includes Al tool proficiency

CROSS-TEAM MEASUREMENT AND SCALING

D Define baseline productivity metrics (cycle time, code review duration, developer
satisfaction)

D Track Al impact on existing engineering metrics across all teams, not just champions

D Measure concrete business outcomes: PRs per engineer, bug fixes, test coverage,
time-to-productivity

D Establish regular reporting cadence for leadership on Al ROl and adoption progress

CULTURAL INTEGRATION AND GOVERNANCE

D Integrate Al usage into performance reviews and career development discussions

D Create communities of practice and knowledge sharing beyond original champion
channel

D Establish coding standards and quality gates for Al-generated code

D Address adoption resistance systematically with targeted support and training

VALIDATION OF ENTERPRISE READINESS
D Demonstrate Al works reliably across complex codebases and specialized team
needs

D Show measurable productivity gains that justify continued investment and
expansion

[[] Establish Al as invisible infrastructure that enhances rather than disrupts developer
workflow

The scaling to-do list 13

SCALING AND PROVING

Your scaling journey starts now

The difference between organizations that successfully scale Al beyond champions and

Th lisn' those that plateau at pilot-level adoption comes down to systematic infrastructure and
€ goalisn t measurement. Start with the checklist above, but remember: the goal isn't perfect rollout

perfect I’O”OUJ[execution — it's building production-grade capabilities that prove Al's enterprise value

. through measurable business outcomes.
execution — g

it's bUI|dIﬂg Once you've established your scaling foundation with systematic onboarding, cross-

production-
grade capabilities
that prove

Al's enterprise
value through
measurable
business
outcomes.

support

e Engineering metrics showing measurable improvements across all teams, not
just pilot groups

team measurement, and enterprise-grade infrastructure, you're ready to move beyond
controlled expansion. You'll know you're there when you start seeing results like:

+ Non-champions consistently using Al tools without additional training or

e Leadership citing Al productivity gains in quarterly business reviews

New hires reaching productivity faster than historical baselines

This systematic scaling becomes your proof of enterprise readiness for SDLC
transformation. Phase 3 focuses on integrating Al across your entire software
development lifecycle, from planning and coding to testing and deployment — where
Al becomes the invisible infrastructure that automates workflows and fundamentally
changes how your engineering organization operates at enterprise scale.

@ PRO TIP

How context-aware tooling accelerates enterprise Al adoption

The difference between successful Phase 2 scaling
and failed rollouts often comes down to context
awareness. Webflow's success hinged on choosing
Al that could understand their complex codebase
relationships and maintain consistency across
specialized teams.

Generic Al coding assistants work well for isolated
tasks but break down when faced with enterprise
realities: complex architectures, established
coding patterns, cross-service dependencies, and
specialized team workflows. When Al suggestions
don't understand your existing codebase structure
or contradict your established patterns, adoption
stalls as engineers lose trust in the tool's reliability.

As Webflow found, context-aware Al changes this

dynamic by understanding your entire codebase,
not just the current file. It learns your team’s
architectural decisions, coding standards, and
naming conventions, then generates suggestions
that feel like they came from a senior engineer
who's been working on your project for years.

This means new team members can onboard
faster because the Al guides them toward patterns
that already exist, senior engineers can refactor
confidently knowing the Al understands cross-file
dependencies, and the entire organization can
scale Al adoption without sacrificing code quality
or consistency. When Al truly understands your
context, it becomes infrastructure rather than

a tool — invisible, reliable, and essential to your
development workflow.

14

INTEGRATION AND SYSTEMIZATION

Now, the focus
shifts from
adoption and
scaling to deep
integration and
automation.

PHASE 3

Integration and
Systemization

What you'll accomplish

Integrate context-aware Al across the entire software development lifecycle, from
planning and requirements gathering through deployment and monitoring

Establish organization-wide standards and governance frameworks that ensure
consistent Al usage while maintaining security, compliance, and code quality at
enterprise scale

Automate routine SDLC workflows and processes, enabling engineers to focus
on high-value architectural decisions and complex problem-solving rather than
repetitive tasks

Demonstrate measurable ROI and business impact through comprehensive metrics
that tie Al productivity gains directly to revenue, time-to-market, and operational
efficiency

Transform Al from productivity tool to strategic infrastructure that fundamentally
changes how your engineering organization innovates, scales, and competes in the
market

Timeline: 9-12 months for full SDLC integration, with measurable ROl demonstration
within the first three months and complete workflow automation by the end of the
period

15

INTEGRATION AND SYSTEMIZATION

Success is
measured

by workflow
automation,
measurable
business

impact, and your
organization's
ability to innovate
and compete
differently

Strategic transformation and automation

In Phase 2, you proved that Al works at organizational scale. Your engineering teams
are consistently using Al tools, leadership sees measurable benefits, and you have the
infrastructure to support enterprise-wide adoption. Now you face the transformative
challenge of moving from Al as a productivity tool to Al as strategic infrastructure that
fundamentally changes how your engineering organization operates across the entire
software development lifecycle.

The focus shifts from adoption and scaling to deep integration and automation. Success is
no longer measured by usage metrics or individual productivity gains, but by comprehensive
workflow automation, measurable business impact, and your organization’s ability to innovate
and compete differently because of Al.

This is where Al becomes invisible infrastructure, so deeply embedded in your SDLC that
engineers can't imagine working without it, and your business gains sustainable competitive
advantages through faster time-to-market, higher quality software, and more strategic use
of engineering talent. This transformation also establishes the foundation for continuous
innovation, where your organization doesn't just use Al effectively, it begins to shape how

Al evolves in your industry and drives best practices that others will follow. Let's explore an
example from the field.

16

TILT CASE STUDY

From the Field:

How Tilt transformed code reviews
with Al-powered automation

When Tilt, a fintech company with a monolithic
codebase and 100 developers distributed globally,
faced mounting code review bottlenecks, they knew
scattered Al experimentation wouldn't solve their
systemic challenges. With architecture reviewers in
Australia creating 48-hour delays for code merges
and new engineers taking months to learn complex
patterns, they needed strategic Al integration that
could transform their entire development lifecycle.

For Tilt, measurement looked like:

1. Velocity metrics: Track concrete improvements
in development speed across their global team.
Success = Measurable reduction in PR merge
times and review cycles.

2. Knowledge systematization: Document
institutional knowledge in structured formats that
both humans and Al could leverage. Success
= Core engineering concepts captured in
actionable, Al-readable guidelines.

3. Process automation: Integrate Al directly into
their Azure Pipelines for consistent, scalable
code review. Success = Al feedback that
matches senior engineer standards while
reducing human review burden.

50%

INCREASE IN PR VELOCITY

INTEGRATION AND SYSTEMIZATION

17

INTEGRATION AND SYSTEMIZATION

From the Field:

How Tilt transformed code reviews

with Al-powered automation

TILT CASE STUDY

Tilt's approach exemplifies Stage 3's strategic integration phase. Rather than treating Al

as individual productivity tools, they built enterprise-grade infrastructure that captured
organizational knowledge and automated critical development processes. The systematic
approach to prompt engineering, rule refinement, and cross-team implementation created
sustainable transformation across their engineering organization. The results demonstrated
true Stage 3 success, moving from tool adoption to business transformation:

"The companies succeeding with
Al aren't just buying platforms;
they're investing in the scaffolding
that makes those platforms
actually useful.”

— James Garrett
Backend Developer
Tilt

o Development velocity: 30% increase in PR velocity with 40%
reduction in merge times, directly addressing their global team
coordination challenges.

* Review efficiency: 23.56% drop in human review comments
(excluding Al feedback), freeing senior engineers for higher-value
architectural work.

e Systematic expansion: Success in code review opened pathways
to IT migrations, product monitoring with Amplitude and Databricks,
and planned on-call incident response automation.

Tilt's experience illustrates the Stage 3 transition: moving from

"Al helps individual developers” to "Al transforms how our entire
engineering organization operates.” Their investment in foundational infrastructure and
systematic knowledge capture positioned them to scale Al benefits across multiple use
cases while maintaining the quality and consistency that enterprise development demands.

40O%

REDUCTION IN MERGE TIMES

257%

DROP IN HUMAN REVIEW COMMENTS

18

=
o
—
-
<C
N
—
=
i
-
(%]
>
2]
[m]
=
<C
=
o
—
—
<t
oc
(G}
i
—
=4
—

The most
meaningful

Al metrics
aren't about Al
usage, they're
about business
outcomes.

Measuring business impact: Beyond lines of code

Tilt's success illustrates a critical principle: the most meaningful Al metrics aren't about Al
usage, they're about business outcomes. A common mistake organizations make when
measuring Al impact is focusing on vanity metrics like lines of code generated or completion
acceptance rates. These numbers tell you how much Al is being used, but not whether it's
making your engineering organization more effective.

Instead of creating new Al-specific KPIs, measure Al's impact on existing engineering metrics
that directly tie to business outcomes. Tilt tracked whether their PR velocity increased and
merge times decreased, metrics they already cared about. Similarly, monitor if cycle time
from commit to deployment improves, whether code reviews require fewer iterations, and
whether bug fix resolution times get faster. Track if test coverage increases and technical
debt gets addressed more systematically. Most organizations see initial business metric
improvements within 3-6 months of systematic integration, with full transformation benefits
evident by month 9-12. These metrics reveal whether Al is truly augmenting your engineers’
ability to deliver value, not just generating more code.

The most telling indicators often come from what Al frees your engineers to focus on. When
Tilt reduced human review comments by 23.5%, those senior engineers didn't disappear,
they redirected their expertise toward architectural decisions, complex problem-solving,

and innovation initiatives like their planned on-call incident response system. This shift from
routine tasks to high-value work is where Al's true business impact emerges. New hires reach
productivity faster because they can navigate complex codebases with assistance, and
experienced engineers report higher satisfaction because they spend less time on repetitive
tasks and more time solving the interesting problems that drive business differentiation.

These improvements in developer experience and focus directly correlate with retention,
innovation, and long-term engineering velocity — the outcomes that actually matter to your
business.

19

Phase 3

Adoption
framework

Tilt didn't just integrate Al
tools, they built enterprise-
grade infrastructure that
transformed their entire
development lifecycle.
Adapt the roadmap to
systematically move

from Al adoption to Al as
strategic infrastructure.
Plan for 9-12 months
total, with measurable ROI
demonstration within the
first quarter and full SDLC
automation by the end of
the period.

{3 augment code

FOUNDATION AND KNOWLEDGE SYSTEMIZATION

D Audit existing Al usage patterns across all engineering teams to identify successful
workflows and integration gaps

D Document institutional knowledge in structured, Al-readable and human-friendly
formats (architectural patterns, coding standards, review criteria)

D Establish enterprise governance frameworks covering Al usage policies, security
requirements, and compliance standards

D Create cross-functional Al enablement team with representatives from engineering,
security, legal, and operations

D Risk mitigation: Plan 2-3x longer than initial estimates for knowledge documentation
— complex architectural patterns take time to systematize

PROCESS INTEGRATION AND MEASUREMENT
D Integrate Al into critical SDLC workflows augmented with human feedback: CI/CD
pipelines, automated code review, testing frameworks

D Implement measurement systems tracking business outcomes (cycle time, merge
velocity, quality metrics) not Al usage statistics

D Pilot automated workflows in low-risk areas before expanding to mission-critical
processes

D Establish “hypercare” channels for real-time refinement and issue resolution during
rollout

D Risk mitigation: Address resistance from non-early-adopter teams through clear
communication about Al augmentation, not replacement

FULL SDLC AUTOMATION AND ROI DEMONSTRATION
D Scale automation across planning, development, testing, deployment, and
monitoring phases

D Demonstrate concrete ROl through measurable improvements in existing
engineering metrics

D Establish continuous improvement processes for refining Al integration based on
production usage

D Document systematic expansion pathways to additional use cases (incident
response, migrations, monitoring)

D Risk mitigation: Involve security and compliance teams early—enterprise-scale Al
integration complexity grows exponentially

STRATEGIC INFRASTRUCTURE ESTABLISHMENT

D Achieve “invisible infrastructure” status where engineers stop thinking about “using
Al" and focus on problem-solving

D Position organization to innovate on Al capabilities rather than just consuming Al
tools

D Establish foundation for Phase 4: continuous innovation and industry leadership in
Al-augmented development

The integration and systemization to-do list 20

INTEGRATION AND SYSTEMIZATION

Your transformation journey reaches critical mass

The difference between organizations that achieve Al-powered transformation and those
that remain stuck with productivity tools comes down to systematic integration and
measurable business impact. Execute the roadmap above, but remember: the goal isn't
perfect automation, it's building strategic infrastructure that fundamentally changes how your
engineering organization innovates and competes.

Once you've established enterprise-grade Al integration with systematic knowledge capture,
workflow automation, and measurable ROl demonstration, you're ready to move beyond
operational efficiency. You'll know you're there when you start seeing results like:

e Engineers naturally solving problems without consciously “using Al" — it's become
invisible infrastructure

« Business metrics showing sustained competitive advantages: faster time-to-market,
higher quality releases, strategic reallocation of engineering talent

e Leadership viewing Al capabilities as core to product strategy and market
differentiation

e Your organization setting industry standards rather than following them

This systematic transformation becomes your foundation for continuous innovation. Phase
4 focuses on leveraging your Al infrastructure to drive industry leadership, innovating on
Al capabilities, shaping how Al evolves in your industry, and establishing best practices
that competitors will follow. At this stage, Al becomes your competitive moat, enabling
breakthrough innovations that weren't possible with traditional development approaches.

It's building
infrastructure that
fundamentally
changes how
your engineering
organization
innovates and
competes.

21

CONTINUOUS INNOVATION

True industry
leadership
through Al

remains
largely
uncharted
territory.

PHASE 4

Continuqus
Innovation

The Al-assisted development landscape is still in its infancy. While some organizations have
mastered productivity gains and systematic integration, true industry leadership through

Al remains largely uncharted territory. Most companies are still figuring out Phase 2 and 3,
which means the organizations that define Phase 4 will shape the industry futures.

When paradigms are still forming, early movers don't just gain competitive advantage,

they define what competitive advantage looks like. The organizations making strategic Al
investments today are positioning themselves to be tomorrow'’s category creators. Based on
emerging patterns and the trajectory of Al development, we believe Phase 4 organizations
will be characterized by:

e Industry influence through innovation: These organizations won't just use Al,
they'll influence how Al tools are built. Their unique requirements and innovative
applications will drive vendor roadmaps and shape industry standards.

o Proprietary Al infrastructure as competitive moat: While others rely on commodity
Al tools, Phase 4 leaders will build custom capabilities that create sustainable
competitive advantages. Their Al infrastructure will be as differentiated as their core
products.

e Cultural leadership in Al adoption: They'll become the organizations others study
and emulate. Their approaches to Al integration, team structure, and development
practices will become the playbooks that define industry best practices.

o Ecosystem contribution and thought leadership: Through open source
contributions, research publications, and conference presentations, they'll actively
shape how the entire industry thinks about Al-assisted development.

While Phase 4 remains largely aspirational, there are some companies that are beginning

to exhibit Phase 4 behaviors. For example, during the beta development of our command-
line Al agent tool, Tilt demonstrated Phase 4 behavior by pioneering a “swarm coordination”
approach and building systematic documentation infrastructure for Al integration. Their
innovations influenced our product roadmap, and they're now sharing their approach publicly,
helping define industry best practices for Al adoption.

22

CONTINUOUS INNOVATION

Create
sustainable
competitve

moats that
grow stronger
as capabilities
evolve

Building Al innovation capabilities: Consumer to creator

The biggest shift in Phase 4 will be in moving from consuming Al tools to creating Al
solutions that give your organization unique competitive advantages. This means developing
internal capabilities to build custom Al implementations, fine-tune models for your specific
domain, and create proprietary solutions that competitors can't simply purchase off the shelf.

To get a headstart, identify areas where basic code completion tools don't fully address your
organization’s unique challenges or opportunities. These gaps become the foundation for
custom Al development, whether that's building domain-specific code generation models
trained on your architectural patterns, creating context-aware automation that spans your
entire development ecosystem, or developing intelligent deployment systems that learn
from your operational history. The goal isn't to replace commercial Al tools, but to create
differentiated capabilities that amplify your competitive position.

The most successful Phase 4 organizations will establish dedicated Al innovation teams that
combine deep engineering expertise with advanced context understanding and enterprise
integration capabilities. These teams won't just implement solutions, they'll experiment with
emerging techniques, contribute to open source projects, and build relationships with Al
research communities. They'll influence the direction of Al development rather than simply
react to vendor roadmaps, creating sustainable competitive moats that grow stronger as Al
capabilities evolve.

23

Are you positioned to define the future?

Phase 4

Readiness
assessment

The window for Phase 4
positioning is open now,
but it won't stay open
forever. Use this framework
to assess whether your
organization is primed to
seize this opportunity.

{3 augment code

CULTURAL FOUNDATION ASSESSMENT

. Al-first decision making: Do architectural decisions consider Al capabilities from the
start, not as an afterthought?

. Innovation mindset: Does your team actively experiment with emerging Al
capabilities rather than waiting for proven solutions?

. Learning laboratory culture: Are engineers encouraged to pioneer new approaches
rather than just implement existing ones?

TECHNICAL CAPABILITY ASSESSMENT

. Internal Al expertise: Can your team evaluate new Al technologies independently
without vendor guidance?

. Custom solution development: Do you build proprietary Al implementations that
differentiate your products?

. Rapid adaptation capability: Can you integrate paradigm shifts in Al within quarters,
not years?

INDUSTRY INFLUENCE ASSESSMENT
. Thought leadership: Are you publishing insights that influence how others approach
Al in development?

Il Open source contribution: Do your Al innovations contribute back to the broader
ecosystem?

. Vendor influence: Do Al tool vendors seek your input on roadmap decisions?

COMPETITIVE POSITIONING ASSESSMENT

. Sustainable moats: Are your Al capabilities difficult for competitors to replicate?

. Market differentiation: Do customers choose you specifically because of your Al-
powered capabilities?

. Future-proofing: Are you positioned to maintain advantage as Al capabilities
commoditize?

The continuous innovation assessment

24

THE DEFINING MOMENT

THE DEFINING MOMENT

Where does your
organization stand?

We're at an inflection point. The organizations
that invest strategically in Al infrastructure
today, while the landscape is still forming, will
become the industry leaders that others aspire
to emulate.

The question isn't just whether Al will transform software development. It's whether your
organization will be among those who define what that transformation looks like.

Every organization's Al journey is different, but the progression is consistent: you start by
optimizing existing workflows, then gradually build the capabilities that enable transformation.
Whether you're just beginning with individual adoption or ready to systematize across teams,
the key is taking the next step forward. What's your next move?

Use the self assessment that follows to identify where your company currently sits in our
four-phase framework, then use the adoption strategies in this playbook to chart your
advancement.

25

Where does your organization stand?

PHASE 01 THE CHAMPION FOUNDATION

D Some developers use Al coding assistants independently
D No formal Al policies or guidelines exist

D Al usage varies dramatically across teams

D Leadership awareness of Al tools is limited

D No systematic measurement of Al impact

PHASE 02 SCALING AND PROVING

D Multiple teams have adopted Al tools systematically
D Basic usage guidelines and best practices are documented

D You measure Al impact using business metrics (deployment frequency, lead time) not
just lines of code

D Leadership actively supports Al tool procurement and training

D Al usage is becoming standard across development workflows

PHASE 03 INTEGRATION AND SYSTEMIZATION

D You've built custom Al workflows and infrastructure beyond off-the-shelf tools
D You systematically capture and codify Al best practices across teams

] You track how Al affects strategic outcomes like technical debt reduction and
architecture evolution

D You measure Al's impact on innovation velocity and knowledge transfer effectiveness

D Al infrastructure decisions create measurable competitive advantages that influence
business strategy

PHASE 04 CONTINUOUS INNOVATION

D Your Al innovations influence vendor roadmaps and industry standards
D Your measurement approaches become industry benchmarks that others adopt

D You publish thought leadership and research that shapes how the industry approaches
Al

D Competitors study and attempt to replicate your Al approaches

D You contribute to open source Al development tools and frameworks

The question isn't just whether Al will transform software development. It's whether your
organization will be among those who define what that transformation looks like.

E"E} augment Code Self assessment

Making the journey:
How Augment accelerates your Al adoption

The path from Phase 1to Phase 4 doesn't have to take years. The right Al partner can
accelerate your journey by providing not just tools, but the infrastructure and expertise to
leapfrog common adoption challenges.

Augment is purpose-built for organizations serious about Al transformation. Unlike generic
coding assistants that work file-by-file, Augment's deep context understanding scales
with your codebase complexity, from startup repositories to enterprise monorepos with
millions of lines of code. Our context engine processes your full codebase in real-time,
understanding relationships between components and adapting to your team's patterns.

Ready to accelerate your Al journey? Experience what
context-aware Al can do for your most complex codebases.

'3 augment code

https://www.augmentcode.com/contact

	C173: Off
	C174: Off
	C175: Off
	C176: Off
	C177: Off
	C178: Off
	C179: Off
	C180: Off
	C181: Off
	C182: Off
	C183: Off
	C184: Off
	C185: Off
	C186: Off
	C187: Off
	C171: Off
	C170: Off
	C169: Off
	C167: Off
	C166: Off
	C165: Off
	C164: Off
	C163: Off
	C162: Off
	C161: Off
	C160: Off
	C159: Off
	C158: Off
	C157: Off
	C156: Off
	C155: Off
	C153: Off
	C135: Off
	C136: Off
	C137: Off
	C138: Off
	C139: Off
	C140: Off
	C141: Off
	C142: Off
	C143: Off
	C144: Off
	C145: Off
	C146: Off
	C147: Off
	C148: Off
	C149: Off
	C150: Off
	C151: Off
	C152: Off
	C100: Off
	C101: Off
	C102: Off
	C103: Off
	C104: Off
	C105: Off
	C106: Off
	C107: Off
	C108: Off
	C109: Off
	C1010: Off
	C1011: Off
	C134: Off
	C133: Off
	C132: Off
	C131: Off
	C130: Off
	C115: Off
	C116: Off
	C117: Off
	C118: Off
	C119: Off
	C120: Off
	C121: Off
	C122: Off
	C123: Off
	C124: Off
	C125: Off
	C126: Off
	C127: Off
	C128: Off
	C129: Off
	Button 2:

